Spectral methods for neural characterization using generalized quadratic models
نویسندگان
چکیده
We describe a set of fast, tractable methods for characterizing neural responses to high-dimensional sensory stimuli using a model we refer to as the generalized quadratic model (GQM). The GQM consists of a low-rank quadratic function followed by a point nonlinearity and exponential-family noise. The quadratic function characterizes the neuron’s stimulus selectivity in terms of a set linear receptive fields followed by a quadratic combination rule, and the invertible nonlinearity maps this output to the desired response range. Special cases of the GQM include the 2nd-order Volterra model [1, 2] and the elliptical Linear-Nonlinear-Poisson model [3]. Here we show that for “canonical form” GQMs, spectral decomposition of the first two response-weighted moments yields approximate maximumlikelihood estimators via a quantity called the expected log-likelihood. The resulting theory generalizes moment-based estimators such as the spike-triggered covariance, and, in the Gaussian noise case, provides closed-form estimators under a large class of non-Gaussian stimulus distributions. We show that these estimators are fast and provide highly accurate estimates with far lower computational cost than full maximum likelihood. Moreover, the GQM provides a natural framework for combining multi-dimensional stimulus sensitivity and spike-history dependencies within a single model. We show applications to both analog and spiking data using intracellular recordings of V1 membrane potential and extracellular recordings of retinal spike trains.
منابع مشابه
Using Context-based Statistical Models to Promote the Quality of Voice Conversion Systems
This article aims to examine methods of optimizing GMM-based voice conversion systems performance in which GMM method is introduced as the basic method for improvement of voice conversion systems performance. In the current methods, due to using a single conversion function to convert all speech units and subsequent spectral smoothing arising from statistical averaging, we will observe quality ...
متن کاملAvailability Prediction of the Repairable Equipment using Artificial Neural Network and Time Series Models
In this paper, one of the most important criterion in public services quality named availability is evaluated by using artificial neural network (ANN). In addition, the availability values are predicted for future periods by using exponential weighted moving average (EWMA) scheme and some time series models (TSM) including autoregressive (AR), moving average (MA) and autoregressive moving avera...
متن کاملQUADRATIC STARK CONSTANTS OF NEUTRAL COPPER SPECTRAL LINES IN THE COULOMB APPROXIMATION
Quadratic Stark constants of neutral copper spectral lines for all s,p, and d levels are calculated using the Coulomb approximation. These results are compared with existing data and, generally, good agreement is observed
متن کاملBeyond GLMs: A Generative Mixture Modeling Approach to Neural System Identification
Generalized linear models (GLMs) represent a popular choice for the probabilistic characterization of neural spike responses. While GLMs are attractive for their computational tractability, they also impose strong assumptions and thus only allow for a limited range of stimulus-response relationships to be discovered. Alternative approaches exist that make only very weak assumptions but scale po...
متن کاملAn Overview of Nonlinear Spectral Unmixing Methods in the Processing of Hyperspectral Data
The hyperspectral imagery provides images in hundreds of spectral bands within different wavelength regions. This technology has increasingly applied in different fields of earth sciences, such as minerals exploration, environmental monitoring, agriculture, urban science, and planetary remote sensing. However, despite the ability of these data to detect surface features, the measured spectrum i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013